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ABSTRACT 

When a conventional NLMS adaptive filter is used to 
predict a process, especially when predicting several 
samples ahead, non-linear effects can be observed. These 
non-linear effects produce adaptive filter performance that 
exceeds that of the conventional Wiener filter, and 
engenders weight behavior that is of a time-varying 
nature. After showing the existence of such non-linear 
effects, we show their relation to the difference between 
the structure of the optimal predictor and the structure 
used to model the data to be predicted. The nonlinear 
effects are stronger when the process to be predicted is 
more narrowband. 

KEY WORDS: non-linear effects, NLMS, time- 
varying Wiener filter, multi-channel Wiener filter, multi- 
channel adaptive filter, adaptive prediction. 

1. INTRODUCTION 

Non-linear effects have been shown to exist in a number 
of adaptive filtering applications, such as adaptive noise 
canceling [I, 2], interference contaminated adaptive 
equalization [I, 3], and adaptive linear prediction of 
chirped processes [4]. Often, though not exclusively, 
these nonlinear effects are more prominent when 
bandwidths are narrow and when adaptive filter stepsizes 
are relatively large. The nonlinear effects are 
characterized by performance that exceeds that of the 
Wiener filter of the same structure, and by time-varying 
adaptive filter weight behavior. In adaptive linear 
prediction of chirped processes the performance depends 
on chirp rate and bandwidth [4]. 

In an adaptive linear prediction scenario with a wide- 
sense stationary AR(I) process, it was shown [5] that the 
non-linear effect is stronger the farther ahead one aims to 
predict. The latter means that the loss in prediction 
performance, associated with the increase in prediction 
distance, is less for the adaptive filter than for the Wiener 
filter of the corresponding structure. These results are 
especially important for applications such as the 
prediction of narrowband data in correlated wideband 
noise where the selection of a prediction distance that 

exceeds the correlation length of the additive noise can 
enhance the predictability of the narrowband component. 

While nonlinear effects in adaptive filtering have been 
shown to exist with the least-mean-square (LMS) 
algorithm as well as its normalized form (NLMS), we will 
concentrate here on using the NLMS algorithm. We will 
begin by showing that nonlinear effects exist in the 
adaptive linear prediction (ALP) scenario. As was shown 
for the noise canceling, equalizer, and prediction contexts 
[I - 4], fundamentally the nonlinear effects originate from 
the error signal feedback, which is used in the weight 
update of the NLMS algorithm. 

Here we aim to reveal the mechanism by which the error 
feedback results in the observed nonlinear effects. The 
error signal carries instantaneous information about the 
discrepancy between the actual desired data and its 
NLMS modeled version. The latter is thus related to the 
structure that underlies the optimal estimator for the ALP 
scenario being investigated. We will see that the structure 
of the optimal estimator is different from the tapped delay 
line structure used in conventional adaptive filtering. 
Forcing the conventional tapped delay line model to 
identify the structure of the optimal estimator results in an 
equivalent tapped delay line structure with time-varying 
weights. NLMS tracking of the latter can produce the 
performance gain associated with the observed nonlinear 
effects. 

In addition we illustrate that the performance of the 
adaptive linear predictor is bounded by a two channel 
Wiener filter that utilizes the conventional reference 
channel, containing samples of the far past of the input 
process, and a second or auxiliary channel containing 
samples of the most recent past of the input channel. A 
two-channel Wiener filter such as that considered here 
could be implemented in an approximate fashion by using 
the far past inputs to estimate the most recent past, and 
then using the latter as the second channel. 

2. ALP SCENARIO 

In   the  adaptive   linear  prediction   (ALP)   scenario   of 

interest, the process to be predicted is a white noise nn 

contaminated autoregressive process of order 1. We will 



limit ourselves here to a first order AR(I) process sn, in 

view of the fact that the nonlinear effects reported to date 
involved AR(I) processes. The process to be predicted is 

therefore d'„. 

d.. =.s\. + «.. (I) 

A causal linear predictor, for predicting A steps ahead, 
would use a linear combination of samples of the desired 

signal, available at time n, to predict dll+A . 

(2) 

(n preparation for the adaptive filtering context we 

introduce a delay of A samples into (2), because 
adaptation will be done on the basis of the error at time n. 
For a wide sense stationary process, the resulting 
predictor would remain the same, so that we have the 
following. 

(3) 

lc=0 

The unit pulse response of an optimal linear predictor, as 
in (2) and (3), is of infinite length. In the adaptive linear 
predictor there is a limit to the number of unit pulse 
response samples that can be used, let's say M. The output 
of the adaptive linear predictor is therefore represented as 
follows. 

)'n        '•C-i"»i J/„=„-A-A/H 
A/-I 

= XW*.X-A-* 14) 

w."r. 

We   have   indicated   explicitly  that  the  adaptive   filter 
weights   vary  during   adaptation.   The   samples   of the 

process used in forming the adaptive filter prediction yn , 

are contained in r„, the reference input vector. 

r. = 

d. 

-A-(A/-I) 

(5) 

Since all samples are delayed by A or more, we refer to 
the reference vector as containing the far past of the 
process. 

As far as prediction goes, prediction from the nearest past 
results in better performance for this white noise input. 
For additive correlated noise it is often desirable to delete 
the near past, which has strong noise correlation, in favor 
of larger prediction distances, at which the noise 
components are uncorrelated with the current data. For 
purposes   of  comparison,   and   -   as   we   will   see   - 

explanation, an auxiliary input vector Xn  is defined. The 

latter contains the most recent past of the process to be 
predicted, as expressed in the following definition. 

x„ = 

•«/_ 

d„-2 

"«-(/--!). 

(6) 

The adaptive filtering scenario, using either the reference 
vector only (the conventional case) or the auxiliary vector 
in addition (the 2-channel case), can then be represented 
as in Fig. I. 

Fig. I: Adaptive Linear Prediction Scenario. 

For both the conventional and the two-channel adaptive 
filter (AF) the NLMS algorithm is used, implemented as 
follows. 

YV 
H + l 

•W.V, 

_   c (7) 

The difference between the conventional and 2-channel 
cases lies therefore in the definition that is used for the 

input vector U„ ; Un = r„ as in (5) for the conventional 

case and 11 „ is defined as in (8) for the two-channel case. 

».. = (8) 

The conventional AF is referred to as AF(0,A^), while the 
2-channel AF is referred to as AF(/_,A/). 



3. WIENER FILTERS 

When   Sn   and   nn   in  (1)  are  wide  sense  stationary 

Gaussian processes, as assumed here, the optimal 
predictor (a Wiener filter) is in fact linear and time- 
invariant, as in (2) and (3). 

For the 2-channel case, the Wiener filter (WF) design 
follows from the following general Wiener-Hopf 
equation. 

/•:< [<    rn"]k,=£J d" (9) 

For the conventional WF design we can use (9) after 
deleting   the   partition   corresponding   to   the   auxiliary 

channel. Recognizing that the noise-free process  Sn  is 

AR(1) and that the noise nn is white and zero-mean, the 

component matrices needed in (9) are seen to be auto- or 
cross-covariances of ARMA processes. The latter can be 
evaluated using AR [6] and Sylvester matrix based 
techniques [7] respectively. The performance of the 
resulting WF is given by 

MMSEII,,^I) = E\(II,\
2}-E< <hWl CO) 

Note that the scenarios reflected above are wide-sense 
stationary, so that all resulting WF solutions correspond 
to linear time-invariant (LTI) filters. 

4. NLMS RESULTS 

To illustrate the nonlinear effects that occur when using 
NLMS in the conventional ALP scenario, we use an 
AR(I)        process        with        its        pole       p       at 

fj.95eV6 =0.823 + 7*0.475, additive white noise so 

that SNR is 80 dB, and aim to predict A=l() samples 
ahead. For the conventional ALP we choose A/=2, and for 
the 2-channel case we choose L-\ and A/=2. The 
conventional WF denoted WF(0,2) - and the 2-channel 
WF - denoted WF(I,2) - are designed according to (9), 
and the performance of each is evaluated using (10). The 
theoretical minimum mean-square error (MMSE), from 
(10), is 1 (0 dB) for WF(I,2) and 6.58 (8.18 dB) for 
WF(0,2). The NLMS algorithm is used with stepsize 
Ji - 0.01   for a total of 10,000 iterations, starting with 

the initial weights set to zero. Convergence was observed 
to have occurred after 5,000 iterations. Running the above 
WF designs on this data, yielded typical MSE estimates of 
0.978 for WF(1,2) and of 6.79 for WF(0,2). Note that 
both WF designs are time-invariant in the given scenario. 
The corresponding NLMS adaptive filters produced MSE 

estimates (computed from the final 1,000 iterations, i.e. in 
steady-state) of 0.987 for AF(1,2) and of 6.83 for AF(0,2). 
Note that in the conventional as well as 2-channel cases 
the AF and WF results are very close to the theoretical 
expectation. The real parts of the AF weights during the 
final 1,000 iterations are given in Figures 2 and 3 (the 
imaginary parts behave similarly; their plots are not 
included due to space limitations). 
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Fig. 2: Re(Weights) AF(I,2) for Ji = 0.0 1 . 

Note that the AF(I,2) weights in Fig. 2 vary slightly, and 
do so about the Tl WF(1,2) weights (dotted constant). The 

latter are p , 0, and 0 (this result from (9) will be made 

clear in Section 6). 

9000 9100 9200 9300 9400 9500 9600 9700 9800 9900 IflOOO 
1.1 .in.: index 

Fig. 3: Re(Weights) AF(0,2) lor Ji = 0.0 I . 

We note that the AF(0,2) weights, i.e. for the 
conventional AF, vary much more than the AF(I,2) 
weights. Recall that the MSE performance of 0.987 was 
fairly close to the theoretically expected performance of I 
for the Tl WF, as well as close to the MSE performance 
of 0.978 of the experimental run of the WF(0,2) as 
designed. We observe that the AF(0,2) weights vary about 
the weights of the Tl WF(0,2) (dotted constant). 
For small stepsize, NLMS puts a premium on finding a 
constant weight vector, if one exists. The observations 
above suggest that such a constant solution exists in the 2- 
channel case. The conventional AF(0,2) weight behavior 



is not as constant by far, yet it produces performance 
close to that of the Tl WF(0,2). We hypothesize that - for 
small stepsize - the NLMS AP(0,2) weights remain close 
to the best long term average, constant solution. 

We now repeat the above experiment, with as the basic 
change that the stepsize is now large, in fact equal to I. In 
this situation NLMS puts a premium on tracking time- 
varying weights, if that is what the structure of the desired 
process represents. Since NLMS convergence is fastest 
for this large stepsize, we now run 5,000 iterations, with 
the final 1,000 iterations designating the steady state 
region. Note that the theoretically expected MSE 
performance for WF(I,2) and WF(0,2) is invariant to 
NLMS stepsize, and therefore remain the same, at I and 
6.58 respectively. The experimental MSE performance for 
the designed WF are 1.03 for WF(1,2) and 6.20 for 
WF(0,2), i.e. close to the expected MSE performance. For 
the AF operations during steady state we find 2.10 for 
AF(I,2) and 4.56 for AF(0,2). Note that AF(1,2), for 
which a time-invariant solution exists, incurs excess 
MSE. However, AF(0,2) - for which the existence of a TI 
solution was already doubtful - now produces MSE that 
is less than the Tl WF expectation for MSE performance. 

We see that the conventional NLMS AF(0,2) performs 
better than its Tl WF(0,2) counterpart, thereby illustrating 
nonlinear or non-Wiener behavior. Note that the 2- 
channel NLMS AF(I,2) performs better than the 
conventional NLMS AF(0,2) but worse than its Tl 
\VF(I,2) counterpart. 

The real parts of the AF weights during the final 1,000 
iterations are given in Figures 4 and 5, 

40flO    4100    4200    4300    4400     45O0    4600    4700    4600    4900    5000 
iteration index 

Fig. 4: Re(Weights) AF< 1,2) for (I = 1 . 

The AF(1,2) weights now vary substantially, as a result of 

]J = 1 , accounting for the large excess MSE. 
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Fig. 5: Re(Weights) AF(0,2) for JJ = 1 . 

We also note substantial time-varying behavior of the 
AF(0,2) weights. In this case this time-varying weight 
behavior explains the improvement in MSE performance. 

Note that when NLMS stepsize is large, there is an 
immediate a posteriori adjustment of the AF weight 
vector according to the error signal, as computed in (7). 
The latter reflects the discrepancy between the desired 
data and its current model, as reflected in the a priori 
weight vector. In general, larger stepsizes are good for 
tracking of time-varying weights, while small stepsizes 
are good for reducing excess MSE. The results shown in 
Figs. 2 through 5 suggest that the conventional NLMS AF 
is in tracking mode (doing better at large stepsize, and 
exceeding WF performance), while the 2-channel NLMS 
AF is in estimation mode (doing better at small stepsize, 
and approaching WF performance). We will elaborate on 
this finding in Section 6. 

The above results were for single realizations of the 
desired and noise processes. We provide corresponding 
results for 5 different realizations in Fig. 6. 
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Fig. 6: MSF. Performance with p = 0.95e /h . 

Fig.  6 shows, at various stepsizes, experimental  MSE 
performance (over 1,000 iterations in steady state) for 



WF(0,2) (heavy dots top), AF(0,2) (x's near top), AF(1,2) 
(o's near bottom), and WF(1,2) (heavy dots bottom). The 
theoretical MMSE for WF(0,2) (constant line near top) 
and for WF(I,2) (constant line near bottom) are also 
indicated. Note that the maximum MSE performance 
improvement achieved by AF(0,2) - over WF(0,2) - is 
approximately 2.5 dB (seen at stepsize 0.6). The optimal 
performance - approached by AF(I,2) at small stepsize - 
is 5.5 dB better still. 

The AF(I,2) performance is at the WF(I,2) performance 
for small stepsize, and linearly worsens as stepsize 
increases, as typical for a time-invariant structure 
underlying the desired data. The AF(0,2) performance is 
also at the WF(0,2) performance for small stepsize, but 
shows performance improvements for increased stepsizes 
(perhaps saturating at some level, or worsening for very 
high stepsize), as indicative of a time-varying structure 
underlying the desired data. 

The next section elaborates on the origin of the time- 
varying behavior when using AF(0,2), i.e. the 
conventional AF. 

6. TV WF SOLUTION 

For the above scenarios, at  SNR=80 dB, the desired 
process   is   almost   purely   AR(I).   Consequently,   the 

process dn pretty much satisfies the following structure. 

dn=pd„_l+e„ (II) 

The optimal A-step estimator for an AR(I) process is 
given by 

dn = PA dn_A (12) 

so that we recognize the first RHS term in (II) as the 
optimal one-step estimator. MSE performance 
deteriorates as A is increased, so that the one-step 
estimator delivers the best possible performance. Writing 
the optimal estimator in the form of the 2-channel AF(I,2) 

model yields the following (where the variance of £n  is 

minimal). 

dn=dn+e„ 

= \p'   0   of   d„_,   +e 
' dn.x' 

d„-A 

_(/»-A-l _ 

(13) 

= w„un+e„ 

The   latter  shows   explicitly  which   Tl   weight   vector 
solution AF(1,2) aims for. 

In order to rewrite the desired data structure in terms of 
the conventional AF model, we introduce linking 
sequences, connecting the auxiliary channel element to 
the reference channel elements. 

KII-A 

0(A) 
Pii-A-I 

d ii-l 
d 

n -A 

cl 
(14) 

ii-1 

d II-A-I 

Using the linking sequences in (14) we substitute for the 
auxiliary channel element in (13). Making the substitution 

in terms of dn_& and, alternatively, in terms of dn_A_}, 

and recognizing that each is equally valid, taking an affine 
linear combination of the result yields the following 
equivalent structure for the desired process. 

d.-\p    o   o]" 
' n-1 

d., + £„ 

'n-A-l . 

= ocppla_l"dll_A +(l-a)/>pj_i_,</„_*_, +£„ (15) 

d. . =p-\ppzr o-a)Pit:J 
l/i,-A   I 

+ £.. 

w"   r " Or,n ' II 

The latter equation shows that there is a target weight 
vector for NLMS AF(0,2), the conventional AF, 
corresponding to the same MMSE as that of the one-step 
predictor. However, the latter MMSE can only be realized 
if AF(0,2) can faithfully track the following time-varying 
weight vector implied by (15). 

W0,„ = P 
d-«)p,(,Ar 

(16) 

The AR(1) process in our examples dictates the following 
linking sequence behavior. 

(A-i) = d!dL       A-i 
Pn-& , P ^ U„-A. 

d„-& 

(A) "„-l A 
Kii-A-1 , /''      ^ '/n-A-l 

f/„-A-l 

(17) 

Note that upon substituting the constant component from 
(17) into (16), the constant portion of that weight vector is 
recognized to consist of an affine combination of the 
optimal A-step and (A+l)-step predictors given in (12). 
The stochastic components of the linking sequences in 
(17) - which in our scenario arises from the driving noise 
of the AR(I) process - cause the AF(0,2) target weight 
vector to be time-varying about the above constant 
portion. As a result, AF(0,2) incurs not only an estimation 



error but also a tracking error, and its performance is not 
as good as that of WF(1,2). However, partial success in 
tracking explains performance improvement over that of 
WF(0,2). 

The latter observation suggests that the tracking error 
would be smaller if the stochastic components in (17) 
were smaller. The driving noise is smaller, relative to the 
desired process (and away from its zero-crossings), when 
the AR(1) process is more narrowband. Rerunning the 
experiment    that    produced    Fig.    6,    but    now    for 

I*/ 
p = 0.99e /6 , yields the results in Fig. 7. 
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Fig. 7: MSP. Performance with p = 0.99e /h . 

While the overall behavior in Fig. 7 is similar to that in 
Fig. 6, we note that the desired signal variance has 
increased (from 8.18 dB to 9.61 dB above the driving 
noise variance of 1) while the best AF(0,2) MSB 
performance is now approximately 6 dB better than for 
WF(0,2) (seen at stepsize 0.8). Note that the latter 
performance improvement is not only larger than for the 
wider bandwidth process used for Fig. 6, it is now also to 
within 4 dB of the possible optimal performance. 

7. CONCLUSION 

We have shown that the nonlinear effects of adaptive 
filtering in the linear prediction scenario are associated 
with time-varying NLMS weights. Based on the 2- 
channel ALP scenario an expression for the time-varying 
target weight vector was given, which the conventional 
NLMS adaptive filter aims to track. The time-varying 

nature corresponds to the structure underlying the desired 
data. The conventional NLMS adaptive filter can 
outperform the time-invariant Wiener filter of the same 
filter order and is bounded in its performance by that of 
the optimal 2-channel Wiener filter. 
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